查詞語
導(dǎo)數(shù)(Derivative)是微積分中的重要基礎(chǔ)概念。當(dāng)自變量的增量趨于零時,因變量的增量與自變量的增量之商的極限。在一個函數(shù)存在導(dǎo)數(shù)時,稱這個函數(shù)可導(dǎo)或者可微分。可導(dǎo)的函數(shù)一定連續(xù)。不連續(xù)的函數(shù)一定不可導(dǎo)。導(dǎo)數(shù)實質(zhì)上就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則來源于極限的四則運算法則。
導(dǎo)數(shù)(derivative function)
亦名紀(jì)數(shù)、微商,由速度變化問題和曲線的切線問題而抽象出來的數(shù)學(xué)概念。又稱變化率。
如一輛汽車在10小時內(nèi)走了 600千米,它的平均速度是60千米/小時,但在實際行駛過程中,是有快慢變化的,不都是60千米/小時。為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設(shè)汽車所在位置s與時間t的關(guān)系為s=f(t),那么汽車在由時刻t0變到t1這段時間內(nèi)的平均速度是[f(t1)-f(t0)]/[t1-t0],當(dāng) t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內(nèi)的運動變化情況 ,自然就把極限[f(t1)-f(t0)]/[t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度。一般地,假設(shè)一元函數(shù) y=f(x )在 x0點的附近(x0-a ,x0 +a)內(nèi)有定義,當(dāng)自變量的增量Δx= x-x0→0時函數(shù)增量 Δy=f(x)- f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點可導(dǎo),稱之為f在x0點的導(dǎo)數(shù)(或變化率)。若函數(shù)f在區(qū)間I 的每一點都可導(dǎo),便得到一個以I為定義域的新函數(shù),記作 f',稱之為f的導(dǎo)函數(shù),簡稱為導(dǎo)數(shù)。函數(shù)y=f(x)在x0點的導(dǎo)數(shù)f'(x0)的幾何意義:表示曲線l 在P0[x0,f(x0)] 點的切線斜率。一般地,我們得出用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的增減性的法則:設(shè)y=f(x )在(a,b)內(nèi)可導(dǎo)。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個區(qū)間是單調(diào)增加的。。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個區(qū)間是單調(diào)減小的。所以,當(dāng)f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值。
導(dǎo)數(shù)的幾何意義是該函數(shù)曲線在這一點上的切線斜率。
導(dǎo)數(shù)是微積分中的重要概念。
導(dǎo)數(shù)另一個定義:當(dāng)x=x0時,f‘(x0)是一個確定的數(shù)。這樣,當(dāng)x變化時,f'(x)便是x的一個函數(shù),我們稱他為f(x)的導(dǎo)函數(shù)(derivative function)(簡稱導(dǎo)數(shù))。
y=f(x)的導(dǎo)數(shù)有時也記作y',即 f'(x)=y'=limΔx→0[f(x+Δx)-f(x)]/Δx
物理學(xué)、幾何學(xué)、經(jīng)濟學(xué)等學(xué)科中的一些重要概念都可以用導(dǎo)數(shù)來表示。如,導(dǎo)數(shù)可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經(jīng)濟學(xué)中的邊際和彈性。
以上說的經(jīng)典導(dǎo)數(shù)定義可以認(rèn)為是反映局部歐氏空間的函數(shù)變化。 為了研究更一般的流形上的向量叢截面(比如切向量場)的變化,導(dǎo)數(shù)的概念被推廣為所謂的“聯(lián)絡(luò)”。 有了聯(lián)絡(luò),人們就可以研究大范圍的幾何問題,這是微分幾何與物理中最重要的基礎(chǔ)概念之一。
注意:1.f'(x)<0是f(x)為減函數(shù)的充分不必要條件,不是充要條件。
2.導(dǎo)數(shù)為零的點不一定是極值點。當(dāng)函數(shù)為常值函數(shù),沒有增減性,即沒有極值點。但導(dǎo)數(shù)為零。(導(dǎo)數(shù)為零的點稱之為駐點,如果駐點兩側(cè)的導(dǎo)數(shù)的符號相反,則該點為極值點,否則為一般的駐點,如y=x^3中f‘(0)=0,x=0的左右導(dǎo)數(shù)符號為正,該點為一般駐點。)
求導(dǎo)數(shù)的方法
(1)求函數(shù)y=f(x)在x0處導(dǎo)數(shù)的步驟:
① 求函數(shù)的增量Δy=f(x0+Δx)-f(x0)
② 求平均變化率
③ 取極限,得導(dǎo)數(shù)。
(2)幾種常見函數(shù)的導(dǎo)數(shù)公式:
① C'=0(C為常數(shù)函數(shù));
② (x^n)'= nx^(n-1) (n∈Q);
③ (sinx)' = cosx;
④ (cosx)' = - sinx;
⑤ (e^x)' = e^x;
⑥ (a^x)' = a^xlna (ln為自然對數(shù))
⑦ (Inx)' = 1/x(ln為自然對數(shù))
⑧ (logax)' =(xlna)^(-1),(a>0且a不等于1)
補充一下。上面的公式是不可以代常數(shù)進去的,只能代函數(shù),新學(xué)導(dǎo)數(shù)的人往往忽略這一點,造成歧義,要多加注意。
(3)導(dǎo)數(shù)的四則運算法則:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
(4)復(fù)合函數(shù)的導(dǎo)數(shù)
復(fù)合函數(shù)對自變量的導(dǎo)數(shù),等于已知函數(shù)對中間變量的導(dǎo)數(shù),乘以中間變量對自變量的導(dǎo)數(shù)--稱為鏈?zhǔn)椒▌t。
導(dǎo)數(shù)是微積分的一個重要的支柱。牛頓及萊布尼茨對此做出了卓越的貢獻!
導(dǎo)數(shù)公式及證明
這里將列舉幾個基本的函數(shù)的導(dǎo)數(shù)以及它們的推導(dǎo)過程:
1.y=c(c為常數(shù)) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/(cosx)^2
8.y=cotx y'=-1/(sinx)^2
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/(1+x^2)
12.y=arccotx y'=-1/(1+x^2)
在推導(dǎo)的過程中有這幾個常見的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(shù)(x)看作整個變量,而g'(x)中把x看作變量』
2.y=u/v,y'=(u'v-uv')/v^2
3.y=f(x)的反函數(shù)是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導(dǎo)數(shù)的定義做也是一樣的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。
2.這個的推導(dǎo)暫且不證,因為如果根據(jù)導(dǎo)數(shù)的定義來推導(dǎo)的話就不能推廣到n為任意實數(shù)的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結(jié)果后能用復(fù)合函數(shù)的求導(dǎo)給予證明。
3.y=a^x,
Δy=a^(x+Δx)-a^x=a^x(a^Δx-1)
Δy/Δx=a^x(a^Δx-1)/Δx
如果直接令Δx→0,是不能導(dǎo)出導(dǎo)函數(shù)的,必須設(shè)一個輔助的函數(shù)β=a^Δx-1通過換元進行計算。由設(shè)的輔助函數(shù)可以知道:Δx=loga(1+β)。
所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當(dāng)Δx→0時,β也是趨向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結(jié)果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna。
可以知道,當(dāng)a=e時有y=e^x y'=e^x。
4.y=logax
Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x
Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x
因為當(dāng)Δx→0時,Δx/x趨向于0而x/Δx趨向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有
limΔx→0Δy/Δx=logae/x。
也可以進一步用換底公式
limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1)
可以知道,當(dāng)a=e時有y=lnx y'=1/x。
這時可以進行y=x^n y'=nx^(n-1)的推導(dǎo)了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2)
Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2)
所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)•limΔx→0sin(Δx/2)/(Δx/2)=cosx
6.類似地,可以導(dǎo)出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函數(shù)shx,chx,thx等以及反雙曲函數(shù)arshx,archx,arthx等和其他較復(fù)雜的復(fù)合函數(shù)求導(dǎo)時通過查閱導(dǎo)數(shù)表和運用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結(jié)果。
對于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求導(dǎo)方法。
y=x^n
由指數(shù)函數(shù)定義可知,y>0
等式兩邊取自然對數(shù)
ln y=n*ln x
等式兩邊對x求導(dǎo),注意y是y對x的復(fù)合函數(shù)
y' * (1/y)=n*(1/x)
y'=n*y/x=n* x^n / x=n * x ^ (n-1)
冪函數(shù)同理可證
導(dǎo)數(shù)說白了它其實就是斜率
上面說的分母趨于零,這是當(dāng)然的了,但不要忘了分子也是可能趨于零的,所以兩者的比就有可能是某一個數(shù),如果分子趨于某一個數(shù),而不是零的話,那么比值會很大,可以認(rèn)為是無窮大,也就是我們所說的導(dǎo)數(shù)不存在.
x/x,若這里讓X趨于零的話,分母是趨于零了,但它們的比值是1,所以極限為1.
建議先去搞懂什么是極限.極限是一個可望不可及的概念,可以很接近它,但永遠到不了那個岸.
并且要認(rèn)識到導(dǎo)數(shù)是一個比值.
導(dǎo)數(shù)的應(yīng)用
1.函數(shù)的單調(diào)性
(1)利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性
利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性,這是導(dǎo)數(shù)幾何意義在研究曲線變化規(guī)律時的一個應(yīng)用,它充分體現(xiàn)了數(shù)形結(jié)合的思想.
一般地,在某個區(qū)間(a,b)內(nèi),如果f'(x)>0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減.
如果在某個區(qū)間內(nèi)恒有f'(x)=0,則f(x)是常函數(shù).
注意:在某個區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0
(2)求函數(shù)單調(diào)區(qū)間的步驟
①確定f(x)的定義域;
②求導(dǎo)數(shù);
③由(或)解出相應(yīng)的x的范圍.當(dāng)f'(x)>0時,f(x)在相應(yīng)區(qū)間上是增函數(shù);當(dāng)f'(x)<0時,f(x)在相應(yīng)區(qū)間上是減函數(shù).
2.函數(shù)的極值
(1)函數(shù)的極值的判定
①如果在兩側(cè)符號相同,則不是f(x)的極值點;
②如果在附近的左側(cè),右側(cè),那么,是極大值或極小值.
3.求函數(shù)極值的步驟
①確定函數(shù)的定義域;
②求導(dǎo)數(shù);
③在定義域內(nèi)求出所有的駐點,即求方程及的所有實根;
④檢查在駐點左右的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值.
4.函數(shù)的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內(nèi)一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念.
(2)求f(x)在[a,b]上的最大值與最小值的步驟
①求f(x)在(a,b)內(nèi)的極值;
②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值.
5.生活中的優(yōu)化問題
生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題稱為優(yōu)化問題,優(yōu)化問題也稱為最值問題.解決這些問題具有非?,F(xiàn)實的意義.這些問題通常可以轉(zhuǎn)化為數(shù)學(xué)中的函數(shù)問題,進而轉(zhuǎn)化為求函數(shù)的最大(小)值問題.